TET8 / Anti-Tetraspanin-8 Antibody
In stock
SKU
AT2G23810
Immunogen: | AT2G23810 Q8S8Q6 | |
Synonyms: | TET8, TETRASPANIN8 | |
Background: |
Tetraspanins are a distinct class of conserved integral proteins. In the Arabidopsis, 17 tetraspanin proteins are identified. They are expressed in different organs/tissues and cell types during embryonic and vegetative development. And the onset of expression coincided with the onset of patterning and cell specification in globular and heart stage embryos (TET1 (AT5G46700), TET3 (AT3G45600), TET4 (AT5G60220), TET5 (AT4G23410), TET8 (AT2G23810), TET10 (AT1G63260), TET13 (AT2G03840), TET14 (AT2G01960), and TET15 (AT5G57810)) and in seedlings at the initiation of the stomatal cell lineage (TET2 (AT2G19580)) or at the asymmetric division in the primary root pericycle upon lateral root initiation (TET13). |
Product Information
Form: |
Lyophilized |
Stability & Storage: |
Use a manual defrost freezer and avoid repeated freeze-thaw cycles. |
Shipping: |
The product is shipped at 4℃. Upon receipt, store it immediately at the temperature recommended above. |
Specificity And Cross Reactions
PHY1490S | Arabidopsis thaliana, Brassica napus, Brassica rapa. |
PHY1490A | Arabidopsis thaliana, Brassica napus, Brassica rapa. |
PHY1491S |
Arabidopsis thaliana. |
PHY2750A | Arabidopsis thaliana, Populus trichocarpa, Cucumis sativus, Vitis vinifera, Gossypium raimondii, Physcomitrium patens, Nicotiana tabacum. |
PHY3337A | Arabidopsis thaliana, Brassica napus, Brassica rapa. |
Black are confirmed Reactivities and Gray are predicted Reactivities. |
2020 | Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles; Ning-Jing Liu1, Ning Wang1, 2, Jing-Jing Bao1, 3, Hui-Xian Zhu1, 3, Ling-Jian Wang1, Xiao-Ya Chen1,3 *; MOLECULAR PLANT; DOI: 10.1016/j.molp.2020.07.016. |
2022 | Arabidopsis apoplastic fluid contains sRNA- and circular RNA–protein complexes that are located outside extracellular vesicles; Hana Zand Karimi,1 Patricia Baldrich,2 Brian D. Rutter,1 Lucıa Borniego,1 Kamil K. Zajt,1 Blake C. Meyers2,3 and Roger W. Innes1,*,†; Plant Cell; DOI: 10.1093/plcell/koac043 |
2023 | Biophysical and proteomic analyses of Pseudomonas syringae pv. tomato DC3000 extracellular vesicles suggest adaptive functions during plant infection; Martin Janda,1,2,3 Katarzyna Rybak,1 Laura Krassini,1 Chen Meng,4 Oséias Feitosa-Junior,1 Egidio Stigliano,5,6 Beata Szulc,1 Jan Sklenar,5 Frank L.H. Menke,5 Jacob G. Malone,6,7 Andreas Brachmann,1 Andreas Klingl,1 Christina Ludwig,4 Silke Robatzek1,5; ASM Journals; DOI: 10.1128/mbio.03589-22. |
2023 | Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous miRNAs; María-Carmen Lopez ´ de las Hazas a,1,2, Joao Tom´e-Carneiro b,1,3, Lorena del Pozo-Acebo a,1,4, Andrea del Saz-Lara a,b,5, Luis A. Chapado a,6, Livia Balaguer a,7, Enrique Rojo c,8, Juan Carlos Espín d,9, Carmen Crespo b,10, Diego A. Moreno e,11, Cristina García-Viguera e,12, Jos´e M. Ordovas ´ f,g, Francesco Visioli h,13, Alberto Davalos ´ a,g,14,*; Pharmacological Research; DOI: 10.1016/j.phrs.2023.106999. |
2024 | Arabidopsis TETRASPANIN8 mediates exosome secretion and glycosyl inositol phosphoceramide sorting and trafficking; Ningjing Liu ,1,2,*,† Lipan Hou ,1,3,† Xin Chen ,4,† Jingjing Bao ,1,3 Fangyan Chen ,1Wenjuan Cai ,1 Huixian Zhu ,1,3 Lingjian Wang 1 and Xiaoya Chen 1,3; Plant Cell; DOI: 10.1093/plcell/koad285. |
Write Your Own Review